自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(1)
  • 资源 (1)
  • 收藏
  • 关注

原创 MNIST 手写数字识别,我是如何做到886个可训练参数,识别率达到98.2%? (参数、模型压缩), Keras实现,模型优化

一 项目展示 下面可以看到验证集可以到了0.9823了,实际上,在下面的另外一个训练,可以得到0.9839,我保守的写了0.982 二 项目参数展示 我们先来看看LeNet 5 的结构与参数,参数有61,706个。 这个是我用keras写的,可以看到参数只有886个。 项目代码 我们来看一下模型的代码,模型由传统卷积改成了可分离卷积; 这里padding 主要是为了后面降维方便而设置 这里设置了5层卷积,是考虑到如果层数比较少的话,感受野比较小,增加卷积层,从而增加感受野(我觉得感受野,这时候比模型

2020-10-15 13:25:34 92 1

DIP_figures数字图像处理所需的图像

这里包含数字图像处理所需要的图像,DIP-Edition 3

2021-02-25

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人 TA的粉丝

提示
确定要删除当前文章?
取消 删除